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INTRODUCTION 

THE maximum number N,(d) of ordinary double points (nodes, for short) a hypersurface of 
degree d in P” can have, has been the subject of investigation of several authors. (We refer to 
[l] for an overview.) The best upperbound so far known for n 2 4 is the so-called spectral 
bound, obtained by Varchenko (1131). For hypersurfaces in P4 of low degree one obtains 
from this: 

N,(3) < 10 

N,(4) I 45 

N4(5) I 135 

In fact, N,(3) = 10, realised by the Segre Cubic ([l l]), and also N,(4) = 45, realized by the 
Burkhardt Quartic ([4]). These remarkable threefolds are uniquely determined by having 
these singularities (see [12], [9], and [S]). There is a very rich geometry associated with 
these varieties (see e.g. [12], [2], [S]). 

In [7] Hirzebruch constructed a quintic with 126 nodes. In this note we present a quintic 
& in P4 with 130 nodes, thus narrowing down the possibilities for N4(5) to: 

130 5 N4(5) I135 

$1. THE QUINTIC 

Consider the space P5, with homogeneous coordinates X0, X1, . . . , X5. Let 

Si:= Si(XO, Xi, . * . 3 X5) 

be the i-th elementary symmetric function in the Xi. The equation 

s1 = XfJ + x1 + x2 + x3 + x4 + x5 = 0 

defines a P4 c P5, on which the symmetric group & acts by permutation of the co- 
ordinates. 

THEOREM 1. The quintic hypersurface 4 c P4 defined by the equations 

s1 =o 

Ss + s*s3 = 0 

857 
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has exactly 130 nodes. These form three orbits under the permutation group x6. The following 
table gives a name, the number of elements and a representative point of each &-orbit. 

Name Number of elements Point of &-orbit 

Segre 

Moving 

Extra 

10 (1:1:1:-1:-1:-l) 

90 (l:l:-l:-1:&S-Jz) 

30 (l:l:l:l:~-2:4X-2) 

$2. PROOF OF THEOREM 1 

The space of &-invariant quintics in the P4 defined by St = 0 is spanned by S5 and 
SzS3. For each quintic in the pencil we shall determine the singular locus. For this purpose 
it is convenient to express the Si in terms of the power sums: 

ck:= &(X0, x1, . . . )X,) = 5 x:. 

i=O 

Modulo S1 one has: 

s2 = - +c, 
s3 = ;c, 
s4= -tc,++c: 

s5 = *c, - &C3. 

Consider the variety .M(a:Bj c P4 defined by: 

u 
FtazBj:= as5 + pS2S3 = j C5 - 

(a+ 8) c 6 c 

2 3. 

So, &Y = .M,,: 1, is defined by S5 + SzS3 = :C, - 4C2C3 = 0. 
A point (II):= (I]~:v~: . . . : q5) E P4 c P5 of JZaa,,,,, is a singular point if and only if the 
differentials of the two defining equations in P5 are dependent, i.e. for some (v:~) E P’ one 
has: 

Clearly, v # 0, so we can put v = 1, Furthermore, the variety .M(o: 1j has clearly the surface 
Sz = S3 = 0 as singular locus. So we assume that a # 0 and put 1:= (a+ 8)/2a. From the 
definition of F,,: Bj, and by summing over all indices to eliminate p, it follows that each 
coordinate vi has to satisfy the equation: 

PA:= x4 - &X2 - ; x3x - $c4 - X2,) 

= x4 - kc, - Iz(C2X2 - ;c: +3,x) 
= 0 

where now Ci = Ci(t,ro, ~1, . . . , v5). Now let x, y, z, t be the four roots of the polynomial 
PA(X), where we consider A, C2, C3, C4 as variable constants. Note that from the form of PA 
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it follows that x + y + z + t = 0. A priori there are nine different ways in which the 
coordinates vi of a singular point of JZc,:8j can be distributed over these four roots. Below 
we list these cases 

Case 1: 
Case 2: 
Case 3: 

6x Case 4: 
5x3 Y Case 5: 

4x7 2Y Case 6: 

3% 3Y 
4x, .v, z 

3x, 2Y, 2 

Case I: 

Case 8: 
Case 9: 

2x, 2y, 22 

3x3 y, 2, t 
2x, 2Y, 2, t 

We analyse case by case: 

Case 1. This can not occur, since (q) = (x:x: . . . :x) E P4, so x would have to be zero. 

Case 2. We may assume (q) = (1: 1: 1: 1: 1: - 5). Hence CZ = 30, C3 = - 120, C, = 630 

and 
PA = (X4 - 105) - A(3OX2 - 80X - 150). 

If we require PA(l) = PA( - 5) = 0, we find 1 = g and thus (~1: 8) = (25: 1). 

Case3. Wemayassume(~)=(l:l:l:l:-2:-2).HenceC2=12,Cj= -12,Cg=36 
and 

PA = (X4 - 6) - A( 12(X2 - 2) - 8X). 

If we require P,(l) = PA( -2) = 0, we find 1= 4 and (a:/I) = (2: - 1). 

Case 4. We may assume (q) = (1:l:l: -1: -1: -1). Hence C2=6, C3=0, Cd=6 
and 

PA=(X4-1)-6A(X2-1). 

For all ;i we have PA(l) = PA(- 1) = 0. 

Case 5. We may assume that (q) has the form 

(q) = (x:x:x:x:u -2x: --u-2x) 

For x = 0 we find immediately that PA(O) = P,(l) = PL( - 1) = 0 occurs only for I = t. 
So we may assume that (r~)=(l:l:l:l:u-2: -u-2). Hence C2 = 12+2u2, 
C3 = - 12 - 12u2, C, = 36 + 48u2 + 2u4. Equating PA(X) to zero for X = 1, X = u - 2, 
X = - u - 2 leads to the equations: 

u4 + 24u2 + 15 = 21(u4 + 21~’ + 30) 

u4 - 12u3 + 24u2 - 48~ + 15 = 2A(u4 - 12u3 + 21~’ - 42~ + 30) 

u4 + 12u3 + 24u2 + 48~ + 15= 21(u4 + 12u3 + 21u2 + 42~ + 30). 

The sum of the last two gives the first equation, whereas substraction leads to: 

u(u2 + 4) = UA(2U2 + 7). 

The solution u = 0 brings us back to Case 3, so we assume u # 0. Hence 
0 = (21 - 1)~’ + (7L - 4), which in combination with the first equation gives as solutions: 

1= 1, G-+&-3 

A=+& u= +_3 (Case 2). 
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Case 6. We may assume that (q) = (x:x:x:u - x:u - x: -2u -x). The case x = 0 
leads to I = 4, i.e. (cr:p) = (l:O), so we take x = 1. One has: C2 = 6(u2 + I), 
C3= -6u2(u+3), Cq=6(3u4+4u3+6u2+ 1). Equating PA(X) to zero for 
X = 1, X = u - 1 leads to: 

u2(3u2 + 4u + 6)= 2u2;i(3u2 + 2u + 9) 

U(U3 + 4u2 + 2) = 2ul(u3 + 5u2 - 3u + 3). 

The determinant of this equation system for I is 

2Ou4(u -I- 1)2(u - 2). 

The solutions u = 0, u = 2, u = - 1 lead us back into the Cases 4, 2 and 3, respectively. 

Case 7. We may assume that (r]) = ( x:x:y:y:z:z) withx + y + z = 0. This implies that 
the fourth root t of Pn has to be zero. If we denote by si the i-th power sum in and by (Ti the 
i-th elementary symmetric function in x, y, z, we can write Ci = 2si and so: 

PA = X(X3 - 2&2;1X - 4&3/l) - 3(&4 - 21&Z,). 

So we obtain the following equations: 

~~-22~: = 0 

2hs2 = u2 = - h 

- 4;le3 = -a3 = - f&3 

0 = E4 - 22s; = (3 - 2;1)&$. 

We conclude that if 1 = 4, then there are no additional conditions on x, y, z, whereas 
2 # i leads to ~~ = .s3 = 0, which implies x = y = z = 0. 

Case 8. We may assume (q) = (x:x:x:y:z:t), with 3x + y + z + t = 0 but because 
x + y + z + t = 0, we obtain x = 0, y + z + t = 0. An analysis as in Case 7 gives as 
possibilities: 

1=+, no extra conditions on y, z, t 

J. z4, y, z, t have to be zero. 

Case 9. We may assume(q) = (x:x: -x: -x:z: -z). If x = 0 we are back in Case 5, so 

we may take x = 1. The equations PA( 1) = Pn( - 1) = PA(z) = PA( -z) = 0 reduce to: 

1 - z4 = 21(2 - 22 - z”) 

1 + z2 = 2L(22 + 2). 

But the first equation follows from the second, and for each value of I we find two values for 
2 as solution of 

(2L - l)z2 + (4n - 1) = 0. 

We can summarize the results of the above analysis in the following theorem: 

THEOREM 2. Consider the pencil of &-invariant varieties AY,,:~, E P4, defined by 

A(a:@):QSg + p&s3 = 0 
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Then: A. For a general value of (a: 8) Acaz8) has exactly 100 singular points. These 
points are the &-orbits of: 

(1:l:l: -1: -1: --I), the 10 Segrenodes 

(1:l: -1: -1:~: -z), the 90 Moving nodes 

where z is a solution of bz’ + (a + 2/I) = 0. 
B. For 6 points (~1: p) E P ’ the singular locus ZZ:c.:n of _M(a:P) is different. The following 

table summarizes the situation: 

(r:B) &:P, Point of &-orbit 

(25: 1) 

(1:l) 

(-3:1) 

(0: 1) 

(-2:1) 

106 nodes (10) 

(90) 

(6) 

130 nodes (10) 

(90) 

(30) 

10 Del Pezzo nodes 

the surface 

s2 = s3 = 0 

10 nodes and 

I5 lines 

(1:O) 

10 nodes and 

20 lines 

(1:1:1:-1:-1:-l) 

(l:l:-I:-1:3JZ:--3JT) 

(l:l:l:l:l:-5) 

(1:1:1:-1:-1:-l) 

(l:l:-l:-l:JZ:-fl) 

(l:l:l:l:J--5-2:-Q-2) 

(1:1:1:-1:-1:-l) 

(1:1:1:-1:-1:-l) 

(x:x:y:y:z:z) 

(x+y+z=O) 

(1:l:l: -1: -1: -1) 

(0:O:O:y:z:t) 

(y+z+t=O) 

Remarks. The 10 Segre points are also the singular point of the Segre Cubic. On each of 
the 45 lines connecting two Segre nodes we find a pair of points, moving over these lines as 
we vary (~1: /3), whence the name moving nodes. The above computation does not show that 
these point are really nodes. This has to be checked in each case. However, for the variety 
_,@ there is an argument that all 130 singularities are nodes, because if one point were not 
a node, then by symmetry we would have a X,-orbit and this is not allowed by the spectral 
bound. To be more precise, the spectrum of the cone over a smooth quintic in P3 is as 
follows: 

Spectral number + : 4 : ! s Y 9 Y Y Y ‘: ‘p 

Multiplicity 1 4 10 20 31 40 44 40 31 20 10 4 1 

The spectral bound is that the total number of spectral numbers of all the singularities of 
a quintic c P4 in any interval (a, a + 1) is less than the number of spectral numbers of the 
above spectrum in the same interval. If we take the interval ($, y), we find N4(5) I 135. 
Now any singularity worse than A1 is adjacent to AZ, which implies that in any open 
interval of length one that contains [ y-, y], there are at least two spectral numbers of this 
singularity. But ($, 9) is such an interval. If, say, the smallest &-orbit would consist of 
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singularities worse than a node, then we would find at least 140 spectral numbers in this 
interval, contradicting the spectral bound. Hence, all singularities have to be nodes. 

It can be checked that the singularity transverse to a general point of a singular line of 
J11,_ *: 1l and of _&‘(r :0) is also an ordinary double point. 

The variety J&Z’,_,:,, has only 10 singular points, but these are not ordinary double 
points. For this value of (c(: p) the 90 moving nodes coalesce in 9-tuples with the 10 Segre 
nodes. The resulting singularity I call a Del Pezzo node, as it is locally isomorphic to the 
cone over the cubic surface in P3. 

The variety A(, :0J is defined simply by S5 = 0. It is the Hessian of the Segre Cubic. 
In [3] this variety is called Nieto’s threefold and is related to the moduli space of 
abelian surfaces with (1: 3)-polarization. 

A similar analysis of the pencil 

2 (a,/?): US‘% + PS’, = 4 
c! + 2p a,+- cl,=0 

of &-invariant quartics in P4 can be found in [6]. One finds for general (CL: fl) 30 nodes. For 
(cr:p) = (1:0) we obtain the Burkhardt quartic with 15 extra nodes, and for (cr:p) = (4: - 1) 
the projective dual of the Segre Cubic (Igusa quartic). It has 15 singular lines. The values 
(a:/?) = (5: 1) and (~:fl) = (3: -1) give quartics with resp. 36 and 40 nodes. 

$3. ANALOGY OF v.44 WITH SEGRE CUBIC AND BURKHARDT QUARTIC 

The Segre Cubic Y and the Burkhardt Quartic g have the following remarkable 
property: 

The intersection of the tangent cone at a node with the variety consists of 6 (for Y) 

respectively 8 (for 39) planes. 

So in the projectivized tangent space P3 of the ambient P4 at the node, these planes give 
lines intersecting as follows: 

The quintic Jz’ has a similar property: 

THEOREM 3. The intersection of the tangent cone at one of the 10 Segre nodes with the 

variety A@ consists of 10 planes. In the projectivized tangent space P3 at such a node the planes 
give lines intersecting as follows: 

I 
; 

c__ _+__ _?_ _-. SE c_ __+- -_+____* 

i 1 
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Here the 2 drawn line tripels correspond to 6 of the 15 planes of the Segre Cubic, passing 
through a node, whereas the dashed lines correspond to 4 of the 40 extra planes on _&!, 
passing in 4 tuples through the Segre nodes. In total we have the following planes on A: 

A. The 15 Segre planes, given by (the &-orbit of) 

x()+x3=0 

x1 +x4=0 

xz.+xs=o. 

B. The 40 Extra planes, given by (the &-orbit of) the equations: 

X~+X~+X~+X,+X,+X,=O 

x0 + ox, + 02x* = 0 

x3 + wx4 + 02x5 = 0 

where o = 
-1 +J-3 

2 * 

Proof It is easy to see that the above Segre planes in fact lie on the Segre Cubic S3 = 0 
and on S5 = 0. For reasons of degree, the union of the 15 Segre planes is the complete 
intersection of these two hypersurfaces. It follows that these planes lie on each JZ(.:~). 
However, the variety & contains more planes. First note that the following 16 nodes are in 
the above extra plane: 

0 (1:l:l: -1: -1: -1) 7 
8 

1 (1:l:l:l:a:b) 9 
2 (1:l:l:b:l:n) 10 
3 (1:l:l:a:b:l) 11 

12 
4 (a:b:l:l:l:l) 13 
5 (1:a:b:l:l:l) 14 
6 (b:l:a:l:l:l) 15 

(c: -l:l:-c:l: -1) 
(c: -1:l: -1: -c:l) 
(c:-1:1:1:-1:-c) 
(1:c: -1: -1: -c:l) 
(1:c: -1:l: -1: -c) 
(l:c:-1:-c:l:-1) 
(-1:l:c:l: -1: -c) 
(-1:l:c: -c:l: -1) 
(-l:l:c:-l:-c:l) 

where a = 2w - 1 = &% - 2, b = 20’ - 1 = - J-3 - 2 and c = 20 + 1 = fl. 
The point 0 is the unique Segre node in this plane. One sees that the following four-tuples of 
points are on a line: (0; 1,2, 3), (0; 4, 5, 6), (0; 7, 10, 13), (0; 8, 11, 14), (0; 9, 12, 15). Apart from 
these 5 lines through the Segre node, there are 9 lines of the type (1,4; 9, lo), etc., containing 
two extra and two moving nodes. As each of these 14 lines contain 4 nodes, they have to be 
contained in M. As we have more than 5 of such lines all lying in the plane, we conclude that 
the whole plane has to be contained in A. The configuration of the 10 planes intersecting in 
a Segre node obviously lies on a quadric cone, which has to be the tangent cone of Jkz at the 
node. We can conclude that for reasons of degree these 10 planes together form the 
complete intersection of the quadric cone and 4. 

CONCLUDING REMARKS 

The variety JZ does not have this above property with respect to the other 120 nodes. 
This is in contrast with the Segre Cubic, and the Burkhardt Quartic. In the Burkhard case, 
there is an extra symmetry, relating the nodes of the two &-orbits, making the variety 
invariant under the simple group of order 25920. No such thing can happen for A. 
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One can prove that the defect of JZ is 29. This implies that for a small resolution A% of 

A! one has: dim(H’(&) = 30, dim(H3(&?)) = 2. 

(Note that H3(_%) is also equal to the weight-three part Grr( H3( J%?)) of the mixed 

Hodge structure H3(~).) In particular, we see that A? is rigid. The same holds for the 126 
nodal Hirzebruch quintic and the 125 nodal Schoen quintic (see [lo]). The L-function of 
H3(s) is equal to the L-function of the unique weight four cuspformfor the group r,(6). 
This can be checked by counting points modulo p and comparing with a table of Fourier 
coefficients of modular forms. (I thank B. van Geemen for doing this calculation.) The same 
L-function is associated to the varieties JZ( _ *: 1j and AC, : oj. These facts suggest that there 
are correspondences of these varieties with the elliptic modular threefold of r,(6). However, 
A, _ 3 : 1J gives rise to a weight four form for T0(21). Also, it seems to be of interest to study 
the Picard-Fuchs equation for this family, as there seems to be a rank four piece of the 
cohomology splitting off. These matters will be discussed in a subsequent paper. 
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